www.livit.ru
Контакты     |     RSS 2.0
Летательные аппараты » Самолетовождение » Сокращенные обозначения и условные знаки, принятые в самолетовождении
 
Теория и расчет автожира
Обзор развития автожира
Теория ротора
Аэродинамический расчет
автожира
Устойчивость и балансировка
автожира
 
Строим сами летающие модели
Воздушные змеи
Воздушные шары
Модели планеров
Самолеты с резиновым мотором
Кордовые модели самолетов
Самолеты с электродвигателем
Модели вертолетов
Модели ракет
Организация работы кружка
Советы авиамоделисту
 
Самолетовождение
Сокращенные обозначения
и условные знаки,
принятые в самолетовождении
Основы авиационной картографии
Навигационные элементы полета
и их расчет
Безопасность самолетовождения.
Штурманская подготовка
и правила выполнения полета
Самолетовождение
с использованием угломерных
радиотехнических систем
Самолетовождение
с использованием
радиолокационных
и навигационных систем
Полеты в особых условиях
 
Партнеры
 
Наш опрос
Построили ли Вы что нибудь сами?

Модель самолета
Модель вертолета
Воздушный шар
Модель ракеты
Воздушного змея
Самолет
Вертолет
Автожир

 
Строительное оборудование
Тепловые Пушки от сайта бесплатных объявлений
 
Архив новостей
Февраль 2016 (294)
 
Статьи
» Корректировка показаний КС-6 для отсчета курса по магнитному меридиану аэродрома посадки
В тех случаях, когда полет выполняется с ортодромическим кур­сом на аэродром, где горизонтальная составляющая геомагнитно­го поля мала, необходимо до начала снижения с эшелона уста­новить на УШ курс полета самолета относительно магнитного ме­ридиана аэродрома посадки. Для этой цели в режиме «ГПК» уста­навливают УШ на отсчет:ОМКа = МКГ + (± Δм.м.с) + (λа—λм.с) sin φcp ...

» Полет на радиопеленгатор
При использовании УКВ радиопеленгаторов для контроля пути по направлению запрашиваются в телефонном режиме обратные пеленги (ОП) словами: «Дайте обратный пеленг».При использовании KB радиопеленгаторов для контроля пути по направлению запрашиваются пеленги в телеграфном режиме кодовым выражением ЩДМ, которое означает: «Сообщите магнит­ный курс, с которым я должен направиться к вам при отсутст­вии в ...

» Перевод скорости, выраженной в метрах в секунду, в скорость, выраженную в километрах в час, и обратн ...
Такая операция осуществляется по формулам: V км/ч = V м/сек ·3,6; V м/сек = V км/ч:3,6. Для вычислений по этим формулам на НЛ-10М используются шкалы 1 и 2. Чтобы перевести скорость, выраженную в метрах в секунду, в скорость, выраженную в километрах в час, необходимо прямоуголь­ный индекс 10 шкалы 2 установить на деление шкалы 1, соответ­ствующее скорости в метрах в секунду, и против круглого индек ...

» Длина дуги меридиана, экватора и параллели
Зная радиус Земли, можно рассчитать длину большого круга (меридиана и экватора): S = 2πR= 2·3,14·6371≈40000 км. Определив длину большого круга, можно рассчитать, чему рав­на длина дуги меридиана (экватора) в 1° или в 1ґ: 1 ° дуги меридиана (экватора) =   =   =111 км. 1ґ дуги меридиана (экватора) =   = 1,852 км = 1852 м.

» Магнитные силы, действующие на стрелку компаса. Формула девиации
На стрелку компаса, установленного на самолете, в горизон­тальной плоскости одновременно оказывают действие шесть маг­нитных сил. 1.  Сила  λH, действующая в направлении магнитного   мери­диана. Источником этой силы является в основном горизонтальная составляющая магнитного поля Земли и в меньшей мере мягкое железо,  намагниченное  земным  магнетизмом. Направление  этой силы не зависит от к ...

» Назначение штурманского бортового журнала и его заполнение в период подготовки к полету
Штурманский бортовой журнал (навигационный расчет полета) предназначен для записи расчетных данных полета на земле и фактических данных полета в воздухе. Он является полетным до­кументом, в котором отражаются применяемые способы самолето­вождения, и официальным отчетным документом о выполненном полете. Ведение его обязательно при всех трассовых и внетрассовых полетах. Штурманский бортовой журнал в ...

» Использование КС-6 в полете
Курсовая система позволяет выполнять полеты с локсодроми­ческими и ортодромическими путевыми углами. Полеты по локсо­дромии рекомендуются в умеренном и тропическом поясах при ус­ловии, что участки маршрута имеют протяженность не более 5° по долготе. В этом случае средний ЗМПУ участка должен отличаться от значений ЗМПУ на концах участка не более чем на 2°. Если эта разность более 2°, участок должен ...

» Наука о точном, надежном и безопасном вождении воздушных судов
Самолетовождение — это наука о точном, надежном и безопасном вождении воздушных судов из одной точки земной поверхности в другую. Под самолетовождением понимается также комплекс действий экипажа са­молета и работников службы движения, направленных на обеспечение безопас­ности, наибольшей точности выполнения полетов по установленным трассам (маршрутам) и прибытия в пункт назначения в заданное ...

» Ориентирование карты по странам света
Ориентировать карту по странам света — это значит располо­жить ее так, чтобы северные направления истинных меридианов карты были направлены на север. В практике самолетовождения ориентирование карты по странам света осуществляют по компасу или земным ориентирам.

» Самолетовождение с использованием радиотехнической системы ближней навигации РСБН-2 - Назначение Р ...
Радиотехническая система ближней навигации РСБН-2 пред­назначена для обеспечения самолетовождения, захода на посадку в сложных метеоусловиях, контроля и управления движением са­молетов с земли. Появление этой системы явилось большим дости­жением на пути автоматизации полета, обеспечения высокой точ­ности самолетовождения и безопасности полетов.

» Модель спортивного планера
Модель спортивного планера (рис. 17). Материалом для ее изготовления служит плотная бумага, а инструментом — то­лько простые ножницы. Перед тем как приступить к работе над моделью, вниматель­нее ознакомимся с одним из свойств бумаги — ее способ­ностью сгибаться. Возможно, каждый из нас замечал, что плотная бумага иногда хорошо сгибается, иногда плохо, об­разуя складки. Это зависит от т ...

» Прямоугольный коробчатый змей Л. Харграва
Прямоугольный коробчатый змей Л. Харграва (рис. 5). В конце XIX века австралий­ский ученый Лоуренс Харграв впервые предложил конструк­цию змея-биплана, обладаю­щего значительной грузо­подъемностью. Обтяжку змея делают из двух полос лавсановой пленки или кальки, приклеенных по краям к рейкам каркаса. Подойдет для обтяжки и полиэтиленовая пленка. Всего потребуется два чиста длиной 1300 мм и шири-ной ...

» Собственная устойчивость автожира
Благодаря шарнирному креплению лопастей ротора автожиру присуща собственная статическая устойчивость в форме маятниковой устойчивости, проявляющаяся в особенности при крутых спусках. Действительно, результирующая аэродинамических сил всегда проходит через втулку ротора, которую можно рассматривать как точку привеса для всего автожира. Центр тяжести автожира лежит под втулкой, отстоя от нее по высо ...

» Предотвращение случаев попаданий самолетов в зоны с особым режимом полетов
Над территорией СССР установлены определенные режимы полетов, обеспечивающие безопасность полетов по трассам, в воздушных зонах крупных центров страны и в районах аэродро­мов, а также предотвращающие случаи нарушения экипажами самолетов государственной границы Союза ССР и позволяющие осуществлять контроль за полетами самолетов.

» Дальность полета
Цель дан­ной игры — достижение наи­большей дальности полета. Перед началом надо огово­рить, сколько раз каждый участник будет запускать свою модель, иными словами, сколь­ко будет зачетных полетов (обычно — три). А перед ни­ми надо дать возможность совершить один-два трениро­вочных (пристрелочных) за­пуска. Очередность выхода на старт обычно определяют же­ребьевкой.

» Уравнение нулевого крутящего момента
Средний крутящий момент ротора равен:  

» План и карта
Правильно изобразить поверхность Земли можно только на глобусе, который представляет собой земной шар в уменьшенном виде. Но глобусы, несмотря на указанное преимущество, неудоб­ны для практического использования в авиации. На небольших гло­бусах нельзя поместить все сведения, необходимые для самолето­вождения. Большие глобусы неудобны в обращении. Поэтому под­робное изображение земной поверхности ...

» Определение магнитного пеленга ориентира с помощью девиационного пеленгатора
Для определения МПО необходимо: 1)  установить треногу в центре площадки, где будет списывать­ся девиация; 2)   закрепить пеленгатор на треноге и установить его в горизон­тальное положение по уровню; 3)   отстопорить лимб и магнитную стрелку; 4) вращением лимба совместить 0 шкалы лимба с северным направлением магнитной стрелки, после чего закрепить лимб; 5)   разворачивая визирную рамку и наблюдая ...

» Самолетовождение с использованием радиокомпаса - Задачи самолетовождения, решаемые с помощью радиоко ...
Автоматический радиокомпас (АРК) является приемным уст­ройством направленного действия, позволяющим определять на­правление на  передающую радиостанцию. АРК совместно с при­водными и радиовещательными станциями относится к угломер­ным системам самолетовождения.

» Девиация компаса и вариация
Компасным меридианом называется линия, вдоль кото­рой устанавливается магнитная стрелка компаса, находящегося на самолете (рис. 3. 3). Компасный и магнитный меридианы не совпа­дают. Девиацией компаса Δк называется угол, заключенный между северными направлениями магнитного и компасного мери­дианов. Она отсчитывается от магнитного меридиана к компасному к востоку (вправо) со знаком плюс, к зап ...

» Построение кривой потребных тяг (кривая Пено) для горизонтального полета автожира
Имея поляру автожира, мы можем приступить к вычислению и построению кривой потребных тяг для горизонтального полета у земли. Ввиду того, что автожир может совершать горизонтальный полет при больших углах атаки (благодаря тому, что у него нет срыва струй, как у самолета), тяга его винта будет давать вертикальную слагающую и уравнения установившегося равномерного горизонтального полета для автожира ...

» Географические координаты
Географические координаты — это угловые величины, которые определяют положение данной точки на земной поверхности. Гео­графическими координатами являются широта и долгота места (рис. 1.3).  

» Определение радиодевиации
Радиодевиация определяется на 24 ОРК через 15°. На каждом ОРК с помощью девиационного пеленгатора измеряется КУР и вычисляется радиодевиация по формуле Δр = КУР-ОРК. Радиодевиация может определяться по невидимой или види­мой радиостанции.

» Основные сведения о НИ-50БМ
В комплект навигационного индикатора входят следующие ос­новные приборы (рис. 19.1): датчик воздушной скорости (ДВС), автомат курса, задатчик ветра и счетчик координат. Все они, кро­ме датчика воздушной скорости, устанавливаются на приборной доске штурмана и используются для управления индикатором. Навигационный индикатор является полуавтоматом. Одна часть исходных данных вводится в прибор автомат ...

» Расчет пройденного расстояния, времени полета и путевой скорости
Пройденное   расстояние определяется   по формуле S = Wt, где S—пройденное расстояние, км (м); W — путевая скорость, км/ч; t — время полета, ч и мин (мин и сек). Для определения пройденного расстояния на НЛ-10М необходи­мо установить треугольный индекс шкалы 2 на значение путевой скорости по шкале 1 и против деления шкалы 2, соответствующего времени полета, отсчитать на шкале 1 и ...

» Содержание карт
Издаваемые карты отражают различные сведения о местности, т. е. каждая карта имеет определенное содержание. Содержанием (нагрузкой) карты называется степень отражения топографических элементов местности на ней. При составлении карт учитывают их масштаб и назначение и изображают на них лишь    те элементы, которые необходимы при пользовании данными картами. На авиационные карты наносятся гидрографи ...

» Самолетовождение с использованием наземных радиопеленгаторов - Задачи самолетовождения, решаемые с ...
Наземный радиопеленгатор — это специальное прием­ное радиотехническое устройство, позволяющее определять нап­равление на самолет, на котором работает передающая радиостан­ция. Данные пеленгации наземного радиопеленгатора могут быть использованы только при наличии двусторонней связи экипажа самолета с землей.

» Подготовка к полету с использованием РСБН-2
Опыт использования РСБН-2 показывает, что достаточно пол­ная реализация возможностей этой системы прежде всего зави­сит от заблаговременной  подготовки  данных  для ее применения и оперативностиработы экипажа в полете, поэтому экипажи са­молетов, на которых установлена   аппаратура   РСБН-2,   обязаны    в   период   предварительной подготовки к полету подготовить по всем участкам трассы необходим ...

» Выход на радиостанцию с нового заданного направления
Выход на радиостанцию аэродрома с нового заданного на­правления осуществляется только по указанию диспетчера в це­лях обеспечения безопасности полета. Выходить на новую ЛЗП приходится при заходе на посадку по кратчайшему расстоянию, на, маршруте и в учебных полетах. Применяются следующие способы выхода на новую ЛЗП: а)   с постоянным МК выхода; б)   с постоянным КУР выхода.

» Устранение установочной ошибки рамки радиокомпаса
Блок рамки устанавливается на самолет так, чтобы направле­ние курсовой черты, отмеченное рисками на основании рамки, сов­пало с направлением продольной оси самолета. Если блок рамки установлен неточно, то при КУР — 0° величина ОРК не будет рав­на нулю. Установочной ошибкой рамки радиокомпаса на­зывается угол, на который отклоняется стрелка указателя от нуле­вого деления шкалы при КУР = 0°. Э ...

 
Наши друзья
Сделай сам своими руками tehnojuk.ru. Техножук от ветродвигателя до рентгеновского аппарата.
 
 Сокращенные обозначения и условные знаки, принятые в самолетовождении
Самолетовождение  |   Просмотров: 37673  
 
Точки и линии
МС — место   самолета
ИПМ — исходный   пункт   маршрута
ППМ — поворотный   пункт   маршрута
КО — контрольный   ориентир
КЭ — контрольный   этап
ЛЗП — линия   заданного   пути
ЛФП — линия фактического пути
АЛП — астрономическая   линия   положения
РНТ — радионавигационная   точка
ОПРС — отдельная   приводная   радиостанция
РСБН — радиотехническая   система   ближней   навигации

Направления, углы и координаты
С — север
Ю — юг
В — восток
3 — запад
Си — северное   направление   истинного   меридиана
См — северное   направление   магнитного   меридиана
Ск — северное   направление   компасного   меридиана
Си.о — северное направление истинного опорного меридиана
См.о — северное направление магнитного опорного меридиана
ЗИПУ — заданный   истинный   путевой   угол
ЗМПУ — заданный   магнитный   путевой   угол
ФИПУ — фактический   истинный   путевой   угол
ФМПУ — фактический   магнитный   путевой   угол
ОЗИПУ — ортодромический заданный  истинный путевой угол
ОЗМПУ — ортодромический  заданный  магнитный  путевой  угол
ИК — истинный   курс
МК — магнитный   курс
КК — компасный   курс
МКр — магнитный   курс   расчетный
МКср — магнитный   курс   средний
МКсл — магнитный   курс   следования
МКвых — магнитный   курс   выхода   на ЛЗП
ОИК — ортодромический   истинный   курс
ОМК — ортодромический   магнитный   курс
Δк — девиация   компаса
Δр — радиодевиация
Δм — магнитное   склонение
Δ — вариация
УС — угол   сноса
УСр — угол   сноса   расчетный
УСф — угол сноса фактический
БУ — боковое   уклонение   в   градусах
ДП — дополнительная   поправка   в   курс
ПК — поправка   в   курс
δ — направление  ветра   метеорологическое, отсчитанное от магнит­ного меридиана
НВ — направление ветра навигационное, отсчитанное от магнитного меридиана
УВ — угол   ветра
УВcр — угол   ветра   средний
ОРК — отсчет   радиокомпаса
КУР — курсовой   угол   радиостанции
КУРвых — курсовой   угол   радиостанции   выхода
КУРсл — курсовой   угол   радиостанции   следования
КУРпредв — курсовой угол радиостанции предвычисленныи
КУО — курсовой   угол   ориентира
МПО — магнитный   пеленг   ориентира
ИПР — истинный   пеленг   радиостанции
МПР — магнитный   пеленг   радиостанции
ИПС — истинный   пеленг   самолета
МПС — магнитный   пеленг   самолета
ОП(ЩДМ) — обратный   пеленг
ПП(ЩДР) — прямой   пеленг
ИП (ЩТЕ) — истинный   пеленг
А — азимут
МУК — магнитный  угол   карты
УР — угол   разворота
Увых — угол   выхода
ВУ — вертикальный   угол
β — угол   крена
σ — поправка   на   угол   схождения   меридианов
φ — широта   пункта
λ — долгота   пункта
Δλ — разность   долгот

Скорости, высоты и линейные величины
Vи — истинная   воздушная   скорость
Vпр — скорость   приборная
VпрКУС   — скорость   по   узкой стрелке   КУС
W — путевая   скорость .  
Vв — вертикальная   скорость
U — скорость   ветра
S — расстояние   между   двумя   точками
S тр — расстояние   траверза
S наб — расстояние   набора   высоты
S сн— расстояние   снижения
S р.в — расстояние   рубежа   возврата
ЛБУ — линейное   боковое   уклонение
ЛУР — линейное   упреждение   разворота
R — радиус   разворота
ГД — горизонтальная   дальность
НД — наклонная   дальность
Ни — истинная   высота
Нпр — приборная   высота
Нб — барометрическая   высота
Но — относительная   высота
Набс — абсолютная    высота
Н760 — условно   барометрическая   высота
Нподх — высота   подхода
Нотх — высота   отхода
Нсн — высота   снижения
Нэш — высота   эшелона
Н760без — безопасная высота по давлению 760 мм рт. ст.
Нприв. без — безопасная высота по приведенному минимальному давлению
Haэр, без — безопасная   высота   по   давлению   аэродрома
МБВ — минимальная   безопасная   высота
ВПР — высота   принятия   решения
Нр — абсолютная   высота   точки   рельефа
На эр — высота   аэродрома   относительно   уровня   моря
ΔНр — превышение  наивысшей  точки  относительно   аэродрома
ΔН — инструментальная   поправка   высотомера
ΔНt — методическая  температурная  поправка  высотомера
ΔНа — аэродинамическая   поправка   высотомера
ΔНб — поправка к высотомеру за барический рельеф
ΔV — инструментальная   поправка   указателя   воздушной  скорости
ΔVа — аэродинамическая поправка указателя воздушной скорости
ΔVсж — поправка  к  указателю скорости  на сжимаемость воздуха
ΔV t — методическая  температурная  поправка  указателя скорости

Время и метеорологические элементы
Т — момент   времени
t — отрезок   времени
Р0— атмосферное   давление   у   земли
Раэр — атмосферное   давление   на   аэродроме
Ри — атмосферное   давление   на   высоте
Рприв. мин — минимальное  атмосферное давление на данном участке трассы,
приведенное   к   уровню   моря
t 0 — температура   у   земли
t н — температура   на   высоте
t пр — показание   термометра   на   высоте   полета
t ср — температура   средняя
t град — вертикальный   температурный   градиент

Условные обозначения элементов схем захода на посадку

Точки
ТНС — точка    начала   снижения
ТКМ — точка   конца маневра при выходе на предпосадочную прямую
ТНР — точка    начала   разворота
ТВР — точка    выхода   из   разворота
ТГП — точка    начала   горизонтального   полета
ТВГ — точка    входа   в   глиссаду
БПРМ — место   установки ближней приводной  радиостанции  с маркером
ДПРМ — место   установки дальней приводной радиостанции с маркером

Расстояния
Sг.п— расстояние от точки начала горизонтального полета на высоте входа  в глиссаду до точки входа  в глиссаду
S1 — расстояние от ДПРМ до начала разворота на 180°
S2 — расстояние от конца первого до начала второго разворота
S3 — расстояние от траверза ДПРМ до начала третьего разворота
S4 — расстояние от конца третьего до начала четвертого разворота
Sт.в.г.— расстояние от точки входа в глиссаду до траверза ГРМ на ось ВПП
Sд — расстояние   от   ДПРМ   до   начала   ВПП
Sб — расстояние   от   БПРМ   до   начала   ВПП
Sгрм — расстояние от начала ВПП до траверза ГРМ на ось ВПП
L — ширина   прямоугольного   маршрута

Высота полета
Нисх — исходная высота начала маневра для захода на посадку
Нв.г — высота   входа   в   глиссаду
Нг.п — высота   горизонтального   полета
Нн.р — высота   начала   разворота
Нв.р — высота   выхода   из   разворота

Время полета
t1 — время полета от ДПРМ до начала разворота   на 180°   или   до
начала первого разворота на 90°
t2 — время полета от конца первого до начала второго разворота
t3 — время полета от траверза ДПРМ до начала третьего разворота
tгп — время   полета   от   ТГП   до   ТВГ
tсн — время   снижения

Углы и направления
УНГ — угол   наклона   глиссады
РУ — расчетный   угол   отворота   от   оси   ВПП
УВпос — угол   ветра   посадочный
КУРтр — курсовой угол радиостанции,  расположенной на траверзе
КУР3 — курсовой угол радиостанции в точке начала третьего разворота
КУР4 — курсовой угол радиостанции в точке начала четвертого разворота
КУРпос — курсовой угол радиостанции    при    полете    на    предпосадочной
прямой
ПМПУ — посадочный магнитный путевой угол
ОПМПУ — обратный посадочный магнитный путевой угол
MK1 — магнитный курс для полета от ДПРМ до начала   разворота на 180° или до начала первого разворота на 90°.
МК2 — магнитный курс для полета к точке второго разворота
МК3 — магнитный курс для полета к точке третьего разворота
МК4 — магнитный курс для полета к точке начала четвертого разворота
МКпос — магнитный   курс   посадки
Условные знаки, применяемые на полетных картах и схемах

Условные знаки, применяемые на полетных картах и схемах  — магнитное   склонение
Условные знаки, применяемые на полетных картах и схемах  — отметка   высоты   местности   над   уровнем   моря
Условные знаки, применяемые на полетных картах и схемах  — отметка   места самолета,  определенного  визуально с указанием времени   определения
Условные знаки, применяемые на полетных картах и схемах  — отметка места самолета, полученного прокладкой линий поло­жения на карте, а также прокладкой пути, в том числе и при помощи, автоматических средств
Условные знаки, применяемые на полетных картах и схемах  — отметка   места  самолета,  полученного с земли по запросу экапажа
Условные знаки, применяемые на полетных картах и схемах  — линия пеленга от ориентира на самолет с указанием времени
Условные знаки, применяемые на полетных картах и схемах  — линия   пеленга   от   РНТ   на   самолет
Условные знаки, применяемые на полетных картах и схемах  — астрономическая   линия   положения
Условные знаки, применяемые на полетных картах и схемах  — линия   пути
Условные знаки, применяемые на полетных картах и схемах  — время пролета ориентира,  числитель—фактическое,   знаме­натель — расчетное
Условные знаки, применяемые на полетных картах и схемах  — запись   времени   (часы,   минуты,   секунды)
Условные знаки, применяемые на полетных картах и схемах  — стационарная и подвижная приводные радиостанции
Условные знаки, применяемые на полетных картах и схемах  — стационарный и подвижный коротковолновые радиопеленга­торы
Условные знаки, применяемые на полетных картах и схемах  — стационарный  и  подвижный   ультракоротковолновые   радио­пеленгаторы
Условные знаки, применяемые на полетных картах и схемах  — наземный радиолокатор
Условные знаки, применяемые на полетных картах и схемах  — радиотехническая система ближней навигации и посадки са­молетов (РСБН)

Распечатать ..

 
Другие новости по теме:

  • Расчет элементов захода на посадку по малому прямоугольному маршруту в штил ...
  • Корректировка показаний КС-6 для отсчета курса по магнитному меридиану аэро ...
  • Основные радионавигационные элементы
  • Способы определения ортодромических путевых углов
  • Пробивание облачности и заход на посадку в сложных метеоусловиях - Схемы с ...


  • Rambler's Top100
    © 2009