» Модель планера «Малыш» Модель планера «Малыш» (рис. 25) оправдывает свое название — ее длина всего 500 мм, а размах крыла около 600 мм. В отличие от предыдущей «схематички» у этого планера крыло сделано объемным. Постройку модели лучше начать с фюзеляжа. Из фанеры или липовой пластины толщиной 4—5 мм выпиливают пилон. В носовой его части делают вырез для загрузки балласта при регулировке, который потом ...
» Расчет времени и места набора высоты заданного эшелона Набор высоты заданного эшелона, как правило, выполняется по трассе полета. Поэтому штурман должен знать, в какое время будет набрана заданная высота полета. Время набора высоты рассчитывается по высотенабора и вертикальной скорости набора. Вертикальной скоростью набора VB называется вертикальная составляющая скорости воздушного судна.
Рис. 5.5. Определение времени и места набора высоты ...
» Проверка работоспособности самолетного оборудования РСБН-2 и калибровка шкал ППДА Проверка работоспособности самолетного оборудования РСБН-2 выполняется в таком порядке: 1. Произвести внешний осмотр щитков управления и приборов системы, установленных на самолете. 2. Убедиться, что горизонтальная и вертикальная стрелки КППМ находятся в нулевом положении. Если они отклонены от нулевого положения, техник по РЭСОС с помощью винтов с надписью «К» и «Г» на КППМ д ...
» Корректировка показаний КС-6 для отсчета курса по магнитному меридиану аэродрома посадки В тех случаях, когда полет выполняется с ортодромическим курсом на аэродром, где горизонтальная составляющая геомагнитного поля мала, необходимо до начала снижения с эшелона установить на УШ курс полета самолета относительно магнитного меридиана аэродрома посадки. Для этой цели в режиме «ГПК» устанавливают УШ на отсчет:ОМКа = МКГ + (± Δм.м.с) + (λа—λм.с) sin φcp ...
» Основные сведения о РСБН-2 Радиотехническая система РСБН-2 является неавтономной системой самолетовождения. Она состоит из наземного и самолетного оборудования. Система работает на ультракоротких волнах, поэтому обмен сигналами между самолетом и наземным маяком возможен лишь на дальностях прямой видимости, которая в основном зависит от высоты полета (табл. 18.1) и может быть определена по формуле: Д км=3,57 √Нм.
» Использование НИ-50БМ при обходе гроз При обходе гроз на маршруте полета НИ-50БМ может использоваться для контроля за положением самолета относительно маршрута и для обратного выхода на ЛЗП (рис. 19.8).
» Элементарные силы и элементарный крутящий момент лопасти Зная скорости воздуха относительно элемента лопасти dr, определим элементарные силы и элементарный крутящий момент. Для выражения сил и момента в аналитической форме необходимо сделать следующие допущения Угол ф (фиг. 53) считается малым.
» Пилотажная модель «Акробат»
Пилотажная модель «Акробат» (рис. 35), разработанная московскими авиамоделистами, обладает хорошей управ^ ляемостью и высокой устойчивостью при выполнении фи» гур пилотажного комплекса. Крыло с большим удлинением заметно уменьшает потери скорости на отдельных участках фигур высшего пилотажа. Фюзеляж — непривычной для современных «пилотажек» конструкции — с чрезвычайно корот ...
» Стремление к полету Стремление к полету всегда влекло человека. Еще в древности люди мечтали летать подобно птицам. А они ведь не всегда при полете машут крыльями: кто из нас не наблюдал и другой вид их полета — планирование. Раскинув крылья, птицы могут без затрат мускульной энергии подниматься вверх, опускаться вниз. Поняв, что для подражания машущему полету птиц человеку недостаточно его мускульной сил ...
» Разграфка и номенклатура (обозначение) карт Каждая карта издается на отдельных листах, имеющих определенные размеры по долготе и широте и представляющих части общей карты целого государства, материка, всего мира. Система деления общей карты на отдельные листы называется ее разграфкой, а система обозначения листов — номенклатурой. Каждому листу карты в зависимости от масштаба по определенному правилу присваивается свое буквенное и ...
» Поляра ротора Для аэродинамического расчета удобно иметь характеристики ротора, отнесенные к поступательной скорости V, т.е. коэффициенты подъемной силы и лобового сопротивления ротора. Определение коэффициентов подъемной силы и лобового сопротивления, а также качества ротора при определенном угле атаки ротора, а стало быть и получение поляры, можно вести двумя следующими способами. Способ непосредственного под ...
» Точность посадки Цель этих соревнований — посадить модель в заранее обозначенное место. На расстоянии 5—6 м от стартовой линии размечают «аэродром». Это может быть круг диаметром около 1 м или лист газеты. Каждый участник после тренировочных запусков совершает зачетный полет Если после первого тура у нескольких участников модели приземлились точно на «аэродром», для определения победителя линию старта ...
» Самолетовождение с использованием наземных радиолокаторов - Назначение наземных радиолокаторов и зад ... Наземные радиолокаторы относятся к смешанным автономным радиотехническим средствам и представляют собой стационарные или передвижные приемопередающие радиотехнические устройства, работающие в импульсном режиме в сантиметровом или метровом диапазоне волн. Они предназначены для контроля за движением самолетов и для решения задач самолетовождения. Наземные радиолокаторы с индикаторами кругового обз ...
» Предотвращение случаев потери ориентировки Для достижения безопасности самолетовождения экипаж обязан в течение всего полета сохранять ориентировку, т. е. знать местонахождение самолета. Современные средства самолетовождения обеспечивают сохранение ориентировки при полетах, как днем, так и ночью. Однако практика показывает, что еще встречаются случаи потери ориентировки. Это вызывает необходимость изучения ее причин и действий экипажа п ...
» Назначение штурманского бортового журнала и его заполнение в период подготовки к полету Штурманский бортовой журнал (навигационный расчет полета) предназначен для записи расчетных данных полета на земле и фактических данных полета в воздухе. Он является полетным документом, в котором отражаются применяемые способы самолетовождения, и официальным отчетным документом о выполненном полете. Ведение его обязательно при всех трассовых и внетрассовых полетах. Штурманский бортовой журнал в ...
» Определение места самолета штилевой прокладкой пути При ведении визуальной ориентировки необходимо знать район предполагаемого местонахождения самолета, чтобы определить, какой участок карты сличить с местностью. Район предполагаемого местонахождения самолета может быть определен штилевой прокладкой пути, которая выполняется по записанным в бортовом журнале курсам, воздушной скорости и времени полета.
» Сущность истинного пеленга (ИП) и взаимозависимость пеленгов Для контроля пути по дальности и определения места самолета запрашиваются истинные пеленги. Запрос пеленгов в телеграфном режиме осуществляется кодовым выражением ЩТЕ, в телефонном режиме — словами «Дайте истинный пеленг». Истинным пеленгом (ЩТЕ) называется угол, заключенный между северным направлением истинного меридиана, проходящего через радиопеленгатор, и ортодромическим направлением на ...
» Основные системы и агрегаты самолета Все современные самолеты сходны по устройству, имеют одни и те же основные системы и агрегаты. Крыло — главная часть самолета — создает подъемную силу, удерживающую его в воздухе. У разных самолетов крылья отличаются размерами, формой и числом. Самолет с одним крылом называют монопланом, а имеющий два крыла (одно над другим) — бипланом. Конструкция крыла зависит от типа с ...
» Порядок работы штурмана при выполнении полета по воздушной трассе Непосредственно перед запуском двигателей, когда все члены экипажа займут свои рабочие места в кабине самолета, проводится контрольная проверка готовности оборудования и самолета к полету в соответствии с контрольной картой обязательных проверок.
» Фюзеляжная модель самолета с резиновым двигателем
Фюзеляжная модель самолета с резиновым двигателем (рис. 30) разработана в авиакружке, которым длительное время руководил автор. Она Посильна тем моделистам, кто имеет опыт авиационного моделирования.
» Использование навигационного индикатора НИ-50БМ - Назначение НИ-50БМ и задачи, решаемые с его помощь ... Одной из важнейших задач, выполняемых экипажем самолета в полете, является сохранение ориентировки. Ее решение достигается периодическим определением места самолета визуальной ориентировкой и с помощью различных радиотехнических средств. При полетах на больших высотах и в сложных метеоусловиях визуальную ориентировку не всегда можно применить, а определение места самолета с помощью радиотехнич ...
» Навигационные элементы ортодромической линии пути
Полет по ортодромической линии пути можно выполнить при наличии на самолете специального навигационного оборудования, измеряющего ортодромический курс, отсчет которого ведется относительно условного направления или опорного меридиана. В зависимости от навигационно-пилотажного комплекса самолета применяются различные способы отсчета ортодромических путевых углов и курсов самолета, выбор которы ...
» Особенности самолетовождения в Арктике и Антарктике Арктикой называется северная географическая зона земного шара, расположенная за Северным полярным кругом (от северной широты 66°33') до Северного географического полюса. Антарктикой называется южнополярный бассейн, лежащий от южной широты 66°33' до Южного географического полюса. Антарктика — это обширная зона, примыкающая к Южному полюсу и включающая в себя Антарктиду и южные части Тихо ...
» Порядок ведения визуальной ориентировки и точность определения места самолета Для быстрого и правильного определения места самолета визуальной ориентировкой необходимо соблюдать следующий порядок: 1. Определить на карте район вероятного местонахождения самолета, для чего от последней отметки МС отложить направление полета и пройденное расстояние, т. е. выполнить прокладку пути по курсу, скорости и времени полета. 2. В пределах найденного района выбрать на карте х ...
» Списывание девиации магнитных компасов Точность определения курса самолета с помощью магнитного компаса зависит от знания девиации и правильности ее учета. Пользоваться магнитным компасом, у которого девиация неизвестна, практически нельзя, так как она может достигать больших значений и привести к ошибкам в определении курса самолета. Девиацию стремятся уменьшить. Для этого компас на самолете располагают вдали от магнитных масс, элек ...
» Изображение ориентиров на экране индикатора Для распознавания наблюдаемой на экране индикатора световой картины необходимо знать, как выглядят на экране различные наземные объекты.
» Полет на радиостанцию Полет на радиостанцию может быть выполнен пассивным или активным способом. В свою очередь активный полет на радиостанцию может быть выполнен одним из следующих способов; 1) с выходом на ЛЗП; 2) с выходом в КПМ (ППМ); 3) с любого направления подбором курса следования. Пеленги, определяемые при полете на радиостанцию, можно использовать для контроля пути по направлению.
» Девиация компаса и вариация Компасным меридианом называется линия, вдоль которой устанавливается магнитная стрелка компаса, находящегося на самолете (рис. 3. 3). Компасный и магнитный меридианы не совпадают. Девиацией компаса Δк называется угол, заключенный между северными направлениями магнитного и компасного меридианов. Она отсчитывается от магнитного меридиана к компасному к востоку (вправо) со знаком плюс, к зап ...
» Расчет истинной воздушной скорости по показанию широкой стрелки комбинированного указателя скорости На скоростных самолетах для измерения воздушной скорости устанавливается комбинированный указатель скорости КУС-1200. Его широкая стрелка показывает приборную воздушную скорость, а узкая — приближенное значение истинной воздушной скорости. Истинная скорость по показанию широкой стрелки КУС рассчитывается по формуле Vи = Vпр + ( ± Δ V) + ( ± Δ Va) +(- Δ Vсж) + ( ± Δ ...
» Модель конструкции авиамоделистов из г. Барановичи Модель конструкции авиамоделистов из г. Барановичи (рис. 41). Интересную модель из пенопласта разработали белорусские строители малой авиации. Облегчение крыла за счет сквозных отверстий позволило создать достаточно технологичную и легкую «бойцовку».
Одной из важнейших задач, выполняемых экипажем самолета в полете, является сохранение ориентировки. Ее решение достигается периодическим определением места самолета визуальной ориентировкой и с помощью различных радиотехнических средств. При полетах на больших высотах и в сложных метеоусловиях визуальную ориентировку не всегда можно применить, а определение места самолета с помощью радиотехнических средств требует времени, которым штурман не всегда располагает. Поэтому на современных самолетах устанавливается навигационный индикатор НИ-50БМ. Он является автономным прибором, предназначенным для непрерывного счисления пройденного самолетом пути и обеспечения сохранения ориентировки.
В комплект навигационного индикатора входят следующие основные приборы (рис. 19.1): датчик воздушной скорости (ДВС), автомат курса, задатчик ветра и счетчик координат. Все они, кроме датчика воздушной скорости, устанавливаются на приборной доске штурмана и используются для управления индикатором. Навигационный индикатор является полуавтоматом. Одна часть исходных данных вводится в прибор автоматически, а другая — вручную. Данные об истинной воздушной скорости и курсе полета вводятся в навигационный индикатор автоматически, а данные о ветре и положении осей условных координат относительно магнитного меридиана — вручную.
Навигационный индикатор может быть использован в полете следующими методами: 1. Методом контроля пройденного расстояния. 2. Методом контроля оставшегося расстояния (методом прихода стрелок к нулю). 3. Методом условных координат.
Для вывода самолета в заданный район необходимо: 1. Соединить прямой линией место самолета с пунктом, на который необходимо выйти. 2. Измерить по карте ЗМПУ и расстояние до заданного пункта (рис. 19.7). 3. Стрелки счетчика координат установить на нуль. 4. На автомате курса и задатчике ветра установить МУК = ЗМПУ. 5. На задатчике ветра установить навигационное направление ветра и его скорость. 6. Развернуть самолет на МК = ЗМПУ и включить навигационный индикатор. 7. Подбором курса следования добиться, чтобы стрелка «В» удерживалась на нуле. 8. Момент выхода самолета на заданный пункт определить приходом стрелки «С» на отсчет, соответствующий расстоянию от исходной точки до заданного пункта.
При обходе гроз на маршруте полета НИ-50БМ может использоваться для контроля за положением самолета относительно маршрута и для обратного выхода на ЛЗП (рис. 19.8).
При радиолокационной ориентировке для счисления пути по дальности может быть использован НИ-50БМ, для чего необходимо: 1. На подобранном курсе следования одним из возможных методов определить путевую скорость самолета. 2. На автомате курса и задатчике ветра установить МУК = ЗМПУ. 3. На задатчике ветра установить НВ=МУК, если W>V, или НВ=МУК±180°, если W 4. На счетчике координат стрелку «В» поставить па нуль, а стрелку «С» — на значение координаты, соответствующей месту самолета на ЛЗП в момент установки стрелок.
Для проверки НИ-50БМ перед полетом необходимо: 1. Включить электропитание прибора по переменному и постоянному току. 2. Включить и подготовить к работе ГИК. Показания ГИК после согласования и показания автомата курса навигационного индикатора не должны отличаться более чем на ±2°. 3. Установить на автомате курса и задатчике ветра МУК=МК самолета. 4. Ввести в задатчик ветра направление ветра, равное курсу, и скорость 120 км/ч. 5. Установить стрелки счетчика координат в нулевое положение. 6. Убедиться, что через 5 мин стрелка «С» счетчика координат покажет отсчет 10 км, а стрелка «В» — 0 км. 7. Изменить направление ветра на 90° от первоначального значения; установить стрелки счетчика координат на нуль и через 5 мин убедиться, что стрелка «В» покажет отсчет 10 км, а стрелка «С» — нуль. Отработка счетчиком координат указанных контрольных значений характеризует работоспособность навигационного индикатора.
Навигационная система «Трасса» предназначена для непрерывного автоматического измерения путевой скорости и угла сноса, а также для указания места самолета в условной прямоугольной системе координат (дальность и линейное боковое уклонение). Система «Трасса» является автономной и может применяться на самых дальних трассах. Ее основной частью является измеритель путевой скорости и угла сноса, использующий эффект Доплера. Поэтому эту систему обычно называют доплеровской автономной навигационной системой. Текущие значения угла сноса, путевой скорости и координаты места самолета непрерывно выдаются на указатели системы.
В состав оборудования системы «Трасса» входят следующие основные устройства и приборы (рис. 20.1): 1. Доплеровский измеритель путевой скорости и угла сноса (ДИСС). 2. Автоматическое навигационное устройство (АНУ); его называют также навигационным вычислителем. 3. Датчик курса. 4. Датчик воздушной скорости. 5. Задатчик угла карты. 6. Указатель угла сноса и путевой скорости. 7. Счетчик координат.
Система «Трасса» имеет следующие органы управления и указатели: 1. Щиток управления системой. 2. Указатель угла сноса и путевой скорости. 3. Задатчик угла карты, 4. Счетчик координат. 5. Переключатель «ДИСС—АНУ». 6. Переключатель «Счетчик» («Вкл.—Выкл.»). 7. Задатчик ветра.
Система «Трасса» может быть использована в следующих режимах: «ДИСС», «Память» и автономный режим работы навигационного вычислителя («АНУ»). Использование системы «Трасса» в режиме «ДИСС». В этом случае штурман обязан: а) Перед вылетом: 1. Установить на щитке управления левый переключатель в положение «Выключено», а правый — в положение «Суша» (при полете над водной поверхностью — в положение «Море»). 2. Переключатель «ДИСС — АНУ» поставить в положение «ДИСС». 3. Установить переключатель «Счетчик» в положение «Выключено». 4. Установить стрелки счетчика координат в нулевое положение. 5. Установить на задатчике угла карты значение ОЗМПУ первого участка маршрута. 6. Включить АЗС с надписью «АНУ, Трасса». 7. Перед взлетом включить систему, для чего левый переключатель на щитке управления перевести в положение «Вкл.», при этом загорается зеленая сигнальная лампочка.
Проверка работы системы «Трасса» может быть полной (проводится техником РЭСОС один раз в течение трех суток с применением переносного контрольного пульта) или контрольной (проводится штурманом перед каждым полетом). В последнем случае для проверки используется имитатор сигналов доплеровской частоты, входящий в состав системы. Проверка осуществляется на двух точках шкалы указателя угла сноса и путевой скорости.
К полетам в особых условиях относятся полеты над горной местностью, в зоне грозовой деятельности, над полярными районами Северного и Южного полушарий, пустынной и малоориентирной местностями, большими водными пространствами, на малых высотах и ночью. Самолетовождение в особых условиях навигационной обстановки выполняется по общим правилам с учетом некоторых особенностей, знание которых является необходимым условием успешного выполнения полетов.
Условия самолетовождения в зоне грозовой деятельности. Грозы являются опасными явлениями погоды для авиации. Опасность полетов в условиях грозовой деятельности связана с сильной турбулентностью воздуха и возможностью попадания молнии в самолет, что может вызвать его повреждение, поражение экипажа и вывод из строя оборудования. Наиболее опасными являются фронтальные грозы, которые охватывают большие пространства и перемещаются с большой скоростью. Внутримассовые грозы занимают меньше пространства и их легче обходить.
Арктикой называется северная географическая зона земного шара, расположенная за Северным полярным кругом (от северной широты 66°33') до Северного географического полюса. Антарктикой называется южнополярный бассейн, лежащий от южной широты 66°33' до Южного географического полюса. Антарктика — это обширная зона, примыкающая к Южному полюсу и включающая в себя Антарктиду и южные части Тихого, Индийского и Атлантического океанов с расположенными здесь островами. Антарктида — это шестой континент нашей планеты, самый изолированный материк Земного шара. Он отделен от других материков большими водными пространствами.
Условия самолетовождения над безориентирной местностью. Безориентирной называется местность с однообразным фоном. Это — тайга, степь, пустыня, тундра, большие лесные массивы, а также малообследованные районы, для которых нет точных карт. Самолетовождение над безориентирной местностью характеризуется следующими условиями:
Условия самолетовождения на малых высотах. Полетами на малых высотах называются полеты, выполняемые на высотах до 600 м над рельефом местности. Такие полеты могут быть преднамеренными (при выполнении различных видов работ авиацией специального применения), учебными (согласно программам летной подготовки) и вынужденными (по различным причинам).
Условия самолетовождения ночью. Ночным называется полет, выполняемый в период от захода до восхода Солнца. Самолетовождение ночью характеризуется: 1. Ограниченными возможностями ведения визуальной ориентировки вследствие плохой видимости неосвещенных ориентиров, Которая зависит от высоты полета (табл; 21.3).
Любой полет в сложных метеоусловиях связан с пробиванием облачности и заходом на посадку по приборам. Этот этап полета является наиболее сложным и ответственным в самолетовождении.
Указанные в сборниках схемы захода на посадку рассчитаны по истинной воздушной скорости для штиля и условий международной стандартной атмосферы. Для аэродромов гражданской авиации приняты два варианта схем: первый вариант для самолетов, имеющих приборную скорость полета по кругу более 300 км/ч и вертикальную скорость снижения 10 м/сек второй вариант для самолетов, имеющих приборную скорость полета по кругу 300 км/ч и менее, вертикальную скорость снижения 10 м/сек и менее.